
Eurographics Symposium on Rendering (DL-only Track) (2022)
A. Ghosh and L.-Y. Wei (Editors)

GPU-Driven Real-Time Mesh Contour Vectorization

Wangziwei Jiang, Guiqing Li∗, Yongwei Nie, Chuhua Xian

South China University of Technology, Institute of Computer Science and Engineering, China

Figure 1: Real-time vectorization and stylization of a rose (158k triangles) under 2560×1440 resolution: From left to right are respectively
input 3D mesh, vectorized stroke curves rendered with different colors, and two different stylizations based on extracted stroke curves

Abstract
Rendering contours of 3D meshes has a wide range of applications. Previous CPU-based contour rendering algorithms support
advanced stylized effects but cannot achieve realtime performance. On the other hand, real-time algorithms based on GPU
have to sacrifice some advanced stylization effects due to the difficulty of linking contour elements into stroke curves. This
paper proposes a GPU-based mesh contour rendering method which includes the following steps: (1) before rendering, a
preprocessing step analyzes the adjacency and geometric information from the 3d mesh model; (2) at runtime, an extraction
stage firstly selects contour edges from the 3D mesh model, then the parallelized Bresenham algorithm rasterizes the contour
edges into a set of oriented contour pixels; (3) next, Potrace is parallelized to extract (pixel) edge loops from the contour pixels;
(4) subsequently, a novel segmentation procedure is designed to partition the edge loops into strokes; (5) finally, these strokes
are then converted into 2D strip meshes in order to support rendering with controllable styles. Except the preprocessing step,
all other procedures are implemented in parallel on a GPU. This enables our framework to achieve real-time performance for
high-resolution rendering of dense mesh models.

CCS Concepts
• Computing methodologies → Non-photorealistic rendering; Image processing;

1. Introduction

Contour of 3D meshes, which reveals the essential shape of objects,
plays a crucial role in painting and other arts. In particular, styl-
ized contours are essential for artistic expression. That is why con-
tour rendering which extracts and stylizes contours of 3D meshes
has long been a fundamental topic in non-photorealistic rendering
(NPR).

CPU-based contour rendering methods usually first convert

the contour of a given 3D model into 2D or 3D stroke curves
[GTDS10], then render those curves in different styles, e.g.,
changing contour width [GVH07], line-drawing density simplifi-
cation [GDS04], stroke texturing [BCGF10], and stroke abstrac-
tion [BJC∗12]. Though CPU-based approaches are able to produce
stroke curves from the 3d contour, it is difficult for them to achieve
real-time performance.

Most contour rendering methods for real-time applications are

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

Wangziwei Jiang, Guiqing Li∗, Yongwei Nie, Chuhua Xian South China University of Technology, Institute of Computer Science and Engineering, China / GPU-Driven Real-Time Mesh Contour Vectorization

fully implemented on GPU in order to avoid frequent commu-
nication between CPU and GPU. GPU-based methods can be
roughly divided into two categories: contour-edge-based rendering
[MH04,CF09], and image-filtering-based rendering [ST90,ND04].
The former directly extract contour edges from the mesh and then
renders each edge as a line segment or a rectangle while the lat-
ter first renders the geometry (for example, depth and normals)
into textures, then finds feature pixels via image processing filters.
Unfortunately, to our knowledge, existing full GPU-based methods
cannot link contour pixels / edges together to form stroke curves,
which however is the key for contour stylization. Recently, we have
also witnessed deep neural networks being utilized to produce styl-
ized line drawings [LNHK20, LFHK21], which mainly focus on
learning styles rather than curve generation.

Chaining contour elements (image pixels or mesh edges) into a
curve usually starts from a contour element and then continuously
links the current element to its adjacent neighbor, until arriving at a
singular point where the chain’s visibility changes [BH19]. When
linking 2D pixels, this process can be considered as a particular
genre of image vectorization. It is difficult to parallelize the linking
procedure due to its sequential nature and the irregular topology of
contour edges or pixels.

To address the issue, we propose a GPU-based system to gener-
ate stroke curves from 3D mesh models. It first works on the CPU
to prepare the adjacency information between vertices, edges and
faces, and also geometric attributes including vertex positions and
face normals. A GPU scheme is then designed to quickly locate
contour edges between front and back faces of the mesh. After that,
the parallelized Bresenham algorithm [Wri90] is adopted to raster-
ize these contour edges. To trace the boundaries of these rasterized
contours efficiently, we parallelize the Potrace algorithm [Sel03]
on the GPU, where the pixel-edge chaining step is parallelized by
the technique of parallel list ranking [Wyl79]. Finally, based on the
orientation of mesh contours and the traced boundaries, we devise
a simple heuristic that is also parallelized to extract stroke polylines
from image boundaries.

In summary, our contributions include:

• We parallelize the Potrace algorithm [Sel03] that is previously
designed for CPU-based image vectorization, overcoming the
sequential nature of boundary tracing by using the technique of
parallel list ranking [Wyl79].

• We also propose a heuristic-rule-based parallel algorithm to ex-
tract stroke curves from the traced boundaries.

• Our method is fully in parallel. By exploiting the sparsity of con-
tour edges and pixels, we further improve the performance of our
method, achieving real-time performance.

2. Related work

An large amount of literature has been contributed to contour ex-
traction and stylization, which can be roughly classified into three
categories: image-based contour rendering, mesh-edge-based con-
tour rendering, and the hybrid methods. This work focuses on real-
time approaches that can be implemented on a GPU. We refer the
readers to the survey by Bénard and Hertzmann [BH19] for more
details.

2.1. Image-based contour rendering

Image-based approaches directly apply image filters to extract fea-
ture pixels from a rendered image. Some CPU-based algorithms
further exploit image vectorization algorithms to convert feature
pixels into continuous planar curves. For example, CPU-based im-
age vectorization algorithms [Sel03] can be used for tracing feature
curves. Xiong et al. [XFZ16] used GPU to accelerate the vector-
ization process, however their method relies on CPU to finish the
sequential contouring.

GPU-based approaches usually make use of a fragment shader to
apply edge detection filter on G-buffers. A G-buffer generally con-
sists of three components: scene color, depth and normal images. A
pixel in the G-buffer is considered as a line feature if its gradient is
higher than a specified threshold [CS16]. Mesh contour can be ap-
proximately extracted as a subset of these line features. As only a
set of scattered pixels are generated, this kind of methods can only
support limited control over the stylization [ND04, Har07]. For ex-
ample, it is challenging to achieve thick lines since the detected
pixels are usually highly noisy under a low gradient threshold. It is
often inaccurate too. For example, contours may be missed when
the depth varies slowly around the contour area.

“Inverted hull”, a special GPU-based method by Raskar and Co-
hen [RC99], is very popular in industries due to its simplicity and
efficiency. The given mesh model is rendered twice to reveal its
outline. The first pass renders front faces into a depth buffer while
the second pass renders slightly enlarged back faces in black color,
so that contour appears as black borders.

Bénard et al. [BJC∗12] proposed a method to track feature
curves in the image space with temporal coherence. Their algo-
rithm is mainly based on CPU, except for the stages of line pixel
filtering and final rendering that are done on a GPU. Each curve is
represented as a polyline initialized using a CPU-based image vec-
torization algorithm. In each frame, they avoided the cost of vector-
ization (essentially reconstruction) by tracking and deforming a set
of curves. Although being able to achieve excellent temporal coher-
ence for meshes of moderate complexity, the approach suffers from
a performance bottleneck due to multiple readbacks from GPU to
CPU. As having little knowledge about the underlying 3D scene,
its curve topology sometimes deviates from scene occlusions and
details.

2.2. Mesh-edge-based contour rendering

Instead of extracting contour strokes from rendered images, some
methods directly compute and render contour edges from the 3D
model. An edge is considered on the contour when one of its two
adjacent faces is forward and the other one backward with respect
to the current viewpoint.

The earliest GPU-based methods [CM02, Goo03] treat each
mesh edge as a degenerated quad and select contour edges in a
vertex shader. Each quad contains four vertices (two are the end-
points of the mesh edge and the other two are its opposite vertices
on its two adjacent faces) in order to determine whether the corre-
sponding edge is a contour one. A fragment shader is then devised
to scan-convert the contour edges. Noticing that it may lead to gaps

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

Wangziwei Jiang, Guiqing Li∗, Yongwei Nie, Chuhua Xian South China University of Technology, Institute of Computer Science and Engineering, China / GPU-Driven Real-Time Mesh Contour Vectorization

between adjacent edges when vertex normals fail to reflect the con-
tour curvature well, McGuire and Hughes [MH04] drew caps at
the ends of each contour edge. There are also efforts using GPU
to extract mesh edges for other purposes. For example, Peciva et
al. [PSM∗13] and wachter et al. [WKS07] used GPU to efficiently
compute shadow volumes.

Cole and Finkelstein [CF10] noted that early GPU-based meth-
ods suffer from visibility issues. They utilized geometry shader and
advanced fragment shader techniques to achieve accurate visibil-
ity determination for contour edges. Each edge is projected onto
the screen and sliced into small 2D segments, then the visibility of
each segment is estimated via comparing its depth against the scene
depth buffer, and finally each contour edge is individually rendered
as textured quads.

2.3. Hybrid approaches

Hybrid method combines both the geometric information of con-
tour edges and texture information of the rasterized pixels to gen-
erate contour stroke curves during the whole process. Both contour
edges and pixels have their own advantages and disadvantages for
rendering. The former may lead to small and frequent zig-zag arti-
facts when rendered as strokes [NM00]. On the contrary, the latter
has simpler topology and natural appearance but usually loses ac-
curate 3D information.

A typical hybrid approach by Isenberg et al. [IHS02] extracts
3D curves from contour edges with the help of a image-precision
line visibility algorithm adapted for contours. The algorithm is es-
sentially a software depth test in which contour edges are scan-
converted into pixel-sized fragments and each fragment compares
its depth against its 3×3 neighbors in the z-buffer.

Our approach analyzes the strokes in the image space. We also
record geometric information such as vertex positions, face nor-
mals, primitive adjacency, and projected direction of contour edges
for use. Therefore, our method can also be viewed as a GPU-based
hybrid algorithm.

3. Overview

Our method takes a triangular mesh as input and generates vector-
ized contour curves. Specifically, it consists of five stages as shown
in Figure 2. From left to right: (1) Preprocessing is conducted on
CPU to collect the adjacency information and geometric attributes
from the given mesh models; (2) Rasterization is responsible for
recognizing the contour edges by checking the orientation of faces
sharing the edge and then rasterizing the edges into pixels via a
parallelized Bresenham algorithm; (3) The vectorization state par-
allelizes Potrace algorithm to trace the loops of the pixel bound-
aries; (4) The stroke generation stage employs a simple heuristic
to extract the strokes from the pixel edge loops; (5) Finally, the
stylization stage yields the rendering result of contour edges with a
specific style.

4. Contour rasterization

Conventional hardware rasterization only yields a whole image in-
stead of generating the desired contour pixels. Hence, we develop

a specialized rasterization scheme to collect contour pixels only.
Our scheme includes three sequential stages: recognition of contour
edges, rasterization of the recognized edges and visibility decision
on the rasterized fragments (pixels).

4.1. Computation of contour edges

An edge of a mesh is considered contour if and only if one of its
two adjacent triangles is a front face and the other one is a back face
with respect to the viewpoint. Given local information of all edges
collected on the CPU, our GPU-based procedure first computes the
orientation of all faces, and then collects the contour edges while
getting rid of non-contour ones.

Pre-processing. Recognizing an contour edge needs to know the
local geometry near the edge, therefore we collect all related infor-
mation in CPU. This includes the following five buffers:

• edge-vertex buffer Bev: store the index of 2 vertices for each
edge;

• edge-face buffer Be f : store the index of 2 adjacent faces of each
edge;

• vertex buffer Bvc: record vertex coordinates;
• face-vertex buffer B f v: save vertex index for each face;
• face-normal buffer B f n: record face normals.

Considering that concave edges, whose internal dihedral angles are
greater than π, cannot be a part of a visible contour [BH19], we
discard all this kind of edges in Bev and Be f to save resources. To
our experience, about 40% of the total mesh edges can be removed
(see Figure 12).

Orientation of triangles with respect to viewpoint. We dis-
patch a GPU kernel to calculate the orientation of each face with
respect to the viewpoint based on buffers B f v and B f n and store it
in the face orientation buffer B f o in which a back face is labelled
with ’1’ while a front face is labelled with ’0’.

Detection of contour edges. With B f o as input, a GPU kernel is
created to recognize contour edges from Be f . An edge is a contour
edge if its two adjacent faces have different orientations, namely
one with label ’1’ and the other with label ’0’. Next, we use paral-
lel stream-compaction [BOA09] to select contour edges while dis-
carding the rest. This yields a new buffer, the contour edge buffer
Bce. The subsequent GPU threads will only process edges in Bce in-
stead of those in Bev. According to McGuire [McG04, MH04], the
number of contour edges is close to N0.8

f where N f is the number
of mesh faces.

4.2. Fragment generation

A parallelized Bresenham algorithm [Wri90] is designed to scan-
convert the contour edges into fragments. Each fragment is a pixel-
sized primitive with geometric attributes and a pointer to its contour
edge. The algorithm consists of two passes: a counting pass and an
allocation pass.

Fragment counting pass. With Bce and Bvc as input, this pass
counts how many fragments are covered by each contour edge. If
the absolute slope of the projection of the contour edge is less than
1, the number of pixels equals to the length of its projection along

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

Wangziwei Jiang, Guiqing Li∗, Yongwei Nie, Chuhua Xian South China University of Technology, Institute of Computer Science and Engineering, China / GPU-Driven Real-Time Mesh Contour Vectorization

Figure 2: Our approach consists of five stages. From left to right are respectively preprocessing, rasterization, vectorization, stroke generation,
and stylization rendering. In the middle three pictures, white pixels stand for background regions.

x-axis. Otherwise the number is the length of its projection along
y-axis. Fragment count is stored as a sub-buffer Bc f within Bce. We
call these fragments contour fragments.

Fragment generation pass. This pass allocates a fragment at-
tribute buffer B f a for the fragments according to the total fragment
number. We record pixel coordinates, projection of its associated
edge vector (edge vertices oriented by its adjacent front face), depth
and normal for each fragment in B f a. For each contour edge, its
fragments are sequentially stored in B f a. To achieve such an al-
location scheme, we need the mapping between contour edges in
Bce and contour fragments in B f a. We apply an exclusive add-scan
upon the fragment count buffer Bc f to build the mapping Bce_ f
for each edge to its starting fragment index. The fragment-to-edge
mapping B f _ce is initialized with negative ones. We use Bce_ f to
build the mapping at starting fragments in B f _ce. Then we broadcast
the mapping to other fragments via a segmented max-scan [Ble90]
upon B f _ce, with each starting fragment seen as the segment head.
B f _ce and Bce_ f enables each fragment (resp. contour) to access
attributes from the corresponding contour (resp. fragments). Fi-
nally, we apply the parallel Bresenham algorithm [Wri90] to com-
pute the coordinate for each fragment. Note that the depth and nor-
mal should be interpolated from vertex attributes in a perspective-
correct manner.

4.3. Contour pixel generation

We need to extract visible fragments from B f a. Accurate contour
visibility has long been a challenging problem [CF10,BHK14]. We
address the issue by a two-pass procedure on GPU. A soft depth test
picks up pixels covered by visible contour fragments, referred to as
contour pixels. A hardware z-test pass then selects the front-most
fragment for each contour pixel.

Soft depth-test pass. A scene depth texture is rendered in ad-
vance. For each contour fragment, we compare its depth from B f a
against depth samples from its 3×3 neighborhood in the depth tex-
ture. A fragment passes the test if it is in front of no fewer than two
neighbors and is called a pseudo-visible-fragment (abbrev. as pv-
frag). This relaxed depth test allows multiple pv-frags to cluster in
the same contour pixel as shown in Figure 3 in which ’e’, ’d’ and
’f’ among 6 fragments pass the test to be a pv-frag within the same
screen pixel.

To generate the contour pixels, we use a texture with all pixels
assigned to 0. Each pv-frag atomically reads its pixel value from
the texture, and then mark the pixel value as 1. We record the co-
ordinate of a pixel in the pv-frag first visiting the pixel and then

employ the parallel stream compaction algorithm [SHG∗] to obtain
a contour pixel buffer Bcp with pixel coordinates.

Figure 3: Creation of contour pixels: A soft test generates a buffer
of contour pixels such as (x,y) and a set of pv-frags for each pixel,
’e’, ’d’ and ’f’ on (x,y); A hard test selects the front-most one for
each contour pixel, e. g. ’e’ among ’e’, ’d’, and ’f’ on (x,y).

Hardware depth test pass. This pass picks the front-most pv-
frag for each contour pixel and copies the fragment attributes into
the corresponding pixel in Bcp. We treat each pv-frag as a 1-pixel-
size point whose depth is the fragment depth and whose color is
computed by packing bits of the fragment attributes from B f a. The
pv-frag points are then rendered into a texture with hardware z-test.
At last, each contour pixel samples the texture at its coordinate and
decodes the sampled color to the corresponding fragment attributes.
In Figure 3, pv-frag ’e’ is finally selected in this test.

Figure 4 presents an example of the visibility test: visible (resp.
hidden) fragments are marked as green (resp. red) on the left col-
umn; the right column illustrates contour pixels colored with en-
coded geometrical attributes. Rasterized contour-pixels only oc-
cupy a tiny portion of the screen, making it possible to achieve
realtime image vectorization.

Figure 4: An example showing results before (left: fragments) and
after (right: the contour pixels) generating contour pixels.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

Wangziwei Jiang, Guiqing Li∗, Yongwei Nie, Chuhua Xian South China University of Technology, Institute of Computer Science and Engineering, China / GPU-Driven Real-Time Mesh Contour Vectorization

5. Contour chaining

So far, we have obtained Bcp, the buffer of contour pixels with
geometric attributes, in which contour pixels generally form long
and thin strands in the corresponding image. A chaining process
should be conducted to link the contour pixels into a set of long
curves [GTDS10].

Our chaining process is inspired by Potrace [Sel03], which is
designed for vectorizing the boundary of a binary image, where the
boundary consists of a sequence of boundary pixel edges. A pixel
has four pixel edges by viewing it as a square and a boundary pixel
edge is one shared by a foreground pixel and a background pixel as
shown in Figure 5. Each boundary is an oriented pixel-edge loop
and encloses a connected region. These loops act as a superset of
our final stroke curves.

Figure 5: Edge-loops: black and white squares are foreground
(contour) and background pixels, respectively; edges shared by
white and black squares are boundary pixel edges (red, blue and
yellow one with arrow indicating their direction); three colored
polygons are pixel-edge loops.

5.1. Generation of pixel edges and creation of their linkage

We follow the ‘path decomposition’ scheme of Potrace to generate
oriented pixel-edges for each contour pixel and build their linkage
according to different contour pixel configurations.

Each pixel-edge is clockwise oriented around its contour pixel,
therefore for the left pixel-edge of a contour pixel, we need to con-
sider the 2×2 block where the contour pixel is at the bottom-right
corner as shown in Figure 6. In this case, there are four possible
configurations for the next pixel-edge. Other three cases, namely
top, right and bottom pixel-edges of a contour pixel can be dealt
with in a similar manner. Furthermore, it also requires to find the
previous pixel-edge of the current one for each of the above four
cases, which is needed in loop breaking process.

The whole task only involves 3× 3 neighborhood of a contour
pixel in the bitmap and it is trivial to parallelize. GPU threads only
work on Bcp, i.e., the buffer of contour-pixels (foreground pixels),
in order to improve performance. A binary bitmap with contour
pixels as the foreground is required to support neighboring pixel
queries. It finally outputs a pixel-edge loop buffer denoted by Bpel

in which each element knows the indices of its previous and next
pixel-edge neighbors.

Figure 6: Four pixel configurations. Given the left pixel-edge (red
arrow) of a contour pixel (black one), its next pixel-edge should be
the blue one.

5.2. Edge loop flattening

We propose a parallel solution to replace the highly sequential pro-
cess of Potrace to extract all pixel-edge loops from Bpel and flatten
them onto a linear array as shown in Figure 7. Our solution consists
of two passes: loop breaking and list ranking. The first pass selects
a head element to break edge-loops while the later pass ranks pixel-
edges in each edge-loop with respect to the head element.

In our setting, each edge-loop is a circular linked list and each
pixel-edge is a list node randomly scattered in Bpel . It is quite suit-
able for Wyllie’s parallel list ranking algorithm [Wyl79] to deter-
mine the rank of each pixel-edge in the pixel-edge loop. With ranks
calculated, organizing the pixel-edges into linear arrays becomes
trivial.

Loop breaking. In this step, we determine the head pixel-edge
for each pixel-edge-loop. We specify the pixel-edge with the largest
Morton code [Mor66] as the head of the loop, where the Morton
code, unique for each pixel-edge, encodes its direction and related
pixel coordinates. After obtaining the Morton codes of all pixel-
edges, we employ Wyllie’s algorithm with its operator set as inte-
ger maximum to pick up the head pixel-edge with maximal Morton
code. The tail node of an edge-loop will be chosen as the predeces-
sor of the starting one. Two traced edge-loops are shown in the top
of Figure 7 in which the red arrows stand for the head.

List ranking. This pass ranks the above linked lists with head
and tail nodes via Wyllie algorithm [Wyl79]. After ranking, we use
the rank of each node (pixel-edge) as its array index and serialize all
pixel-edge loops into an array, i.e., Bpel , such that the pixel-edges
belonging to the same loop occupy a continuous segment as shown
in the bottom of Figure 7.

5.3. Operations on edge-loop pool

The pixel-edge loop buffer Bpel forms the basis of our following
screen-space algorithms. We call it an edge-loop pool. We develop
two special operations: spatial filtering and segmentation. Classical
parallel computing primitives like the segmented scan [SHG∗] can
be applied to the edge-loop pool by treating each edge-loop as a
segment.

Spatial filtering. Spatial filtering can be considered as a 1D con-
volution on each edge-loop: each edge navigates around its edge-
loop and collects data from the neighboring pixel-edges. In our im-
plementation, GPU threads linearly map to all pixel edges. Each
thread caches data into the thread group shared memory. In most

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

Wangziwei Jiang, Guiqing Li∗, Yongwei Nie, Chuhua Xian South China University of Technology, Institute of Computer Science and Engineering, China / GPU-Driven Real-Time Mesh Contour Vectorization

Figure 7: Pixel-edge loops: two pixel-edge loops with a red arrow
as the head node (top) and their pixel-edge loop array (bottom).

cases, neighboring data can be found and fetched efficiently from
this cache. However, there are a few cache misses: (1) Pixel edge
is mapped to the start or end of a thread group; (2) Pixel edge is at
the start (or end) of an edge-loop, and its predecessor (or successor)
is not mapped to the same thread group. This can only happen to
the first or last edge-loop mapped to the thread group. We detect
both scenarios and load missed data to the group shared memory.
Since the topology of edge-loop is fixed each frame, we can prepare
missed data for each thread group and reuse it the whole frame.

Segmentation. Given a key for each edge, segmentation splits
each edge-loop into segments; pixel-edges inside a segment share
the same key, and two adjacent segments have different keys. Seg-
mentation requires each pixel-edge to evaluate where its segment
starts and ends, which can be implemented via two segmented
scans, one for the starting index and another one for the ending
index.

6. Stroke extraction

Edge-loops excessively cover contour features and neither start nor
end at visibility changes. To resolve this issue, we select desired
pixel-edges from loops, which we call stroke segments. Each stroke
segment starts or ends as its underlying mesh contour became vis-
ible or hidden, and each contour feature is covered by exactly one
stroke segment (Figure 8). An “inner” edge-loop without visibility
change will be extracted as a stroke (see the inner loop in Figure 7).

We match the orientation of each pixel-edge with its surround-
ing contour-pixels along the edge-loop; pixel-edges with coher-
ent orientation will be selected as stroke segments. According to
Bénard and Hertzmann [BH19], there are two kinds of visibility
change among contour-pixels: cusp and junction (see Figure 8b).
Our heuristic can resolve both cases owing to the oriented nature of
edge-loops and mesh contours.

6.1. Orientation of contour pixels

Seen from the viewpoint, vertices at a front face (resp. back face)
have a counter-clockwise (resp. clockwise) winding order. Let each

(a) The case of foreground and background contours meet at a junction.

(b) The case of a self-occlusion model generates a cusp and a junction.

Figure 8: Orientation-based stroke extraction.

contour edge share the same vertex order as its adjacent front face.
The contour of a smooth mesh will form counter-clockwise curves
on the screen. After rasterization, the hidden contour is discarded
while the visible contour becomes thin and long strands of contour-
pixels. As the camera projection preserves the orientation of a tri-
angle face, the strands of contour-pixels share a counter-clockwise
orientation (see Figure 8).

During the rasterization stage (Section 4), we numerate vertices
vc0 and vc1 of each contour edge according to its winding order in
the adjacent front face, project them to the screen positions vs0 and
vs1 respectively, and finally copy the edge direction vs1 − vs0 to its
rasterized contour fragments.

6.2. Orientation of pixel-edges

All pixel-edges are originally clockwise oriented around their
contour-pixel square. To estimate an accurate orientation of the
pixel-edge, we fit a curve to the local shape on its edge-loop. Our
fitting algorithm takes the framework by Lewiner et al. [LGJLC05].

We dispatch two kernels to realize the local curve fitting. The
first kernel samples the midpoint of each pixel edge, and then ap-
plies Laplacian operator to smooth the midpoints by using the spa-
tial filtering discussed in Subsection 5.3. The second kernel applies
the spatial filtering again to collect for each pixel edge e0 the mid-
points W = {m−n, . . . m0, . . .mn} of its neighborhood along the
corresponding edge loop (n = 8 in our experiments). In addition,
we compute the arc-length parametrization of W as follows

sk =

0 k = 0;

sk+1 +∥mk −mk+1∥ k =−1,−2 · · · ,−n;
sk−1 +∥mk −mk−1∥ k = 1,2, · · · ,n;

(1)

A quadratic parametric curve us then use to fit We

r(s) = as+bs2, (2)

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

Wangziwei Jiang, Guiqing Li∗, Yongwei Nie, Chuhua Xian South China University of Technology, Institute of Computer Science and Engineering, China / GPU-Driven Real-Time Mesh Contour Vectorization

where r(s) = (x(s),y(s)), a = (ax,ay) and b = (bx,by). This leads
to the following optimization

argmin{a,b}∑
n
k=−n ||wk(mk − r(sk)||2, (3)

where wk = e−
(pk+e−pe)

2

σ2 are Gaussian weights. The orientation of
pixel edge e is then computed as te =

(a)
∥(a)∥ .

6.3. Stroke generation based on inside-outside test

Combining orientations of contour-pixels estimated in Subsection
4.2 and orientations of pixel-edges obtained in Subsection 6.2, we
can extract strokes from edge-loops. Concretely, for each pixel edge
e0, we again collect its neighbor en, · · · ,e−1,e0,e1, · · · ,en on the
same edge loop like having done in Subsection 6.2 and then find
their corresponding contour pixels pn, · · · , p−1, p0, p1, · · · , pn. If
more than half of the inner products between the orientations of
e0 and pk is greater than τ (an adjustable threshold set to 0.6 in
default), then e0 is labeled as inside the surface contour. Otherwise,
it is assigned an outside label.

A Visibility change event happens if adjacent pixel-edges on an
edge-loop switching between inside and outside (visible and oc-
cluded). The segmentation operator described in Section 5.3 is then
used to trace (inside) stroke segments and discard (outside) redun-
dant segments as shown in Figure 9.

Figure 9: Inside-outside test: the case of junction (top row) and
the case of a cusp and a junction (bottom row). Each row shows
contour-pixels, pixel-edges, orientation match, extracted strokes
(colored) and redundant segments (gray) rrom left to right.

The above heuristic may lead to noisy results due to bad mesh
quality or image sampling. We leverage the spatial filtering (Sec-
tion 5.3) to smooth the inside-outside values to make our algorithm
more robust. Very short visible strokes are also given up to improve
the visual appearance.

Note that each stroke is actually a sequence of pixel edges which
should be converted into polylines for rendering. Let {e1,e2 ... en}
be such a stroke without loss of generality. We simply compute the
vertices of its polyline {p0, p1 ... pn} by setting pi to the midpoint
of ei. We can smooth the stroke polylines if necessary. In addition,
we can compute tangent ti of pi as the orientation of ei and normal
ni orthogonal to f ti for latter use.

Conventional stroke rendering algorithms [DiV13] can be eas-
ily applied to these stroke polylines to achieve stylized results. In
order to collaborate with texture mapping, we extend each vertex
of a polyline along its the nomral direction [HLW93] to obtain a
strip mesh as illustrated in Figure 10, and then create the texture
coordinates for each of the mesh vertex on the given texture.

Figure 10: Stroke parameterization for texturing. Extending points
pi on the path along its normal direction ni to two sides yields a
strip planar mesh which is then mapped to the texture space.

7. Experimental results

This section first describes our implementation details and then
shows the advantages of the proposed framework via a variety of
experiments. We will elaborately evaluate the time performance of
our approach and discuss its main influencing factors, and then
compare our approach with three popular contour rendering sys-
tems (Freestyle, Line Art, Pencil+4) and Active Strokes [BJC∗12]
both in time cost and rendering quality. Our system is developed
as a render pipeline in Unity Engine. All runtime procedures are
implemented on the GPU by using HLSL shaders.

Our approach and the first three systems run on a PC with Intel
i7-7700HQ 2.8 GHz of 8 GB RAM and NVIDIA GTX 1070 while
Active Strokes [BJC∗12] works on a PC with Intel Core i7-4790K
4GHz of 32 GB RAM and NVIDIA GTX 980Ti due technique rea-
sons. Nonetheless, both hardware configurations are fairly close.
All results are generated under 1920×1080 resolution.

7.1. Implementation details

Mesh data is preprocessed and stored in GPU buffers persistently
while runtime data such as information for contour edges and pixel-
edges is generated from scratch in each frame. For example, the
edge-loop pool (Section 5.3) contains many sub-arrays sequentially
storing pixel-edges of edge-loops. Each pixel-edge records its index
in the sub-array and the length of the sub-array. The order between
sub-arrays is determined by the allocation process [Har10].

In the chaining stage, Wyllie algorithm requires log(n) iterations
to resolve linked lists with a list length n. In practice, we found
that 18 iterations are enough for screen resolution of 2048×2048.
One or more stream compactions can be inserted inbetween these
iterations to discard short lists that have already finished ranking.

7.2. Performance evaluation

We observe the performance by separating our system into two
stages: one is the rasterization process (Section 4) and the other

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

Wangziwei Jiang, Guiqing Li∗, Yongwei Nie, Chuhua Xian South China University of Technology, Institute of Computer Science and Engineering, China / GPU-Driven Real-Time Mesh Contour Vectorization

is the vectorization process consisting of pixel-edge chaining (Sec-
tion 5) and stroke extraction (Section 6). The model is placed to
cover the screen as much as possible in all experiments.

Time cost distribution. Figure 11 depicts the performance un-
der a 1920× 1080 resolution, commonly used in real-time render-
ing applications. Generally, The performance of the first stage is
mainly governed by shape complexity and mesh size while perfor-
mance of the latter is primarily determined by screen resolution.
We also known from the figure that the time cost mainly comes
from the vectorization stage and is merely affected by the mesh
complexity. Figure 11 shows that our system achieves highly real-
time performance considering the conventional budget of realtime
rendering applications (16ms per frame).

Figure 11: GPU runtime performance per stage, under 1920 ×
1080 resolution

Sparsity analysis of contour primitives. Our approach greatly
benefits in performance from the sparsity of contour edges and con-
tour pixels which determines the GPU workload. To verify this, we
rotate the mesh model and record the average of three ratios - ratio
between the amount of convex edges and the total edges, contour
edges and the total edges, contour-pixels and the pixels covered
by the mesh’s screen bounding box. Figure 12) (a) illustrates that
about 60% convex edges remain after preprocessing while only 4%
of total edges are contour edges. Similarly, near 4% of the render-
ing pixels are contour ones.

7.3. Comparison with previous work

As no existing GPU-based approaches support contour vectoriza-
tion, all approaches to be compared are CPU-based: Freestyle, Line
Art, Pencil+4 and Active Strokes are CPU-based. Both Freestyle
and Line Art are line drawing modules of Blender, among which
Freestyle is based on a series of work by Grabli and Turquin et
al. [GTDS10, GTDS04]. Pencil+4 is a closed-source line drawing
renderer, with implementation across multiple softwares. Consid-
ering that our system is developed in Unity Engine, we choose the
Unity version of Pencil+4 for comparison.

(a)

(b)

Figure 12: Sparsity of primitives: (a) Ratios between convex edges
and the total edges, and the contour edges and the total edges ;
(b) Ratio between contour pixels and screen pixels covered by the
mesh bounding box.

Active Stroke is a prototype based on an image-space line ren-
dering method [BJC∗12], which is different from the other three
tools in two critical points: (1) it only generates curves in the first
frame and then maintains a set of curves throughout the subsequent
frames while the other three methods generate stroke curves for
each frame; (2) it generates curves from feature samples in the
depth buffer with image-space filters (not from actual 3D mesh con-
tours) while the other three methods generate curves from the 3D
contour of the mesh model.

Runtime Performance. For methods generating curves in each
frame (all except Active Strokes), we profile the time of contour ex-
traction and stroke vectorization, which are the main focus of our
method. For Active Strokes, we record the total cost of feature pixel
extraction (extract samples and image readback) and curve pro-
cessing (advection, relaxation, and topology adjustments). Table 1

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

Wangziwei Jiang, Guiqing Li∗, Yongwei Nie, Chuhua Xian South China University of Technology, Institute of Computer Science and Engineering, China / GPU-Driven Real-Time Mesh Contour Vectorization

Table 1: Comparison of timings among five approaches: ours, Freestyle, Line Art, Pencil+4 and Active Strokes [BJC∗12].

Mesh Model (tris) Suzanne (0.1k) Bunny (5k) Cow (6k) Teapot (6k) Fandisk (13k) Rocker. (20k)
Ours 0.76 0.78 0.7 0.75 0.63 0.86

Pencil+4 7.93 8.43 9.32 8.21 9.22 14.84
Freestyle 27.10 43.32 43.75 44.79 53.34 67.13
Line Art 11.30 18.80 19.65 20.29 28.71 44.69

Active Strokes 54.40 54.68 53.79 46.70 52.26 54.40
Mesh Model (tris) Horse (97k) Buddha (99k) Arm. (100k) David (100k) Dragon (249k) Lucy (300k)

Ours 0.87 0.98 0.97 1.02 1.42 0.96
Pencil+4 68.10 97.67 111.61 67.00 208.00 183.60
Freestyle 242.37 331.10 370.56 383.69 828.47 845.61
Line Art 165.90 189.49 233.44 166.54 445.14 551.52

Active Strokes 51.45 97.09 124.56 91.49 107.43 73.73

demonstrates that our approach achieves tens to hundreds folds of
acceleration over other methods. This is because the serial nature
of CPU makes it challenging to process massive geometric data. In
addition, the iterative processes such as contour vectorization also
consume considerable time on CPU (linear time complexity). In
contrast, the time complexity of our vectorization algorithm is only
O(logn).

Stroke chaining quality. Generally, our method produces stroke
curves with quality comparable to or even better than the CPU-
based approaches regardless of the complexity of mesh shapes. In
our experiments, hybrid methods (all except Active Strokes) were
tuned to ensure a coherent configuration: only mesh contour is ex-
tracted, and contour elements are chained to stroke curves starting
and ending at visibility events. Since the stroke topology of Active
Strokes is mainly determined by the curve tracking process, instead
of rendering a static scene, we animate the scene to bring motion to
the curves and take a screen capture.

All experimental results are presented in Figure 14 in which
strokes are drawn with different colors. As shown in areas C and
D in the figures, contour by other methods is inappropriately bro-
ken into fragmented curves, and the curve topology fails to re-
flect the occlusion relationship. In contrast, continuous curves by
our method match the occlusion relationship better. Nevertheless,
area A depicts that our image-based line extraction process can
not recognize those endpoints with subtle visibility change on the
screen, while other hybrid methods (all except Active Strokes) pro-
duce more accurate line distribution. This defect is even more vis-
ible for Active Strokes, which links all pixels as a single curve.
For dense meshes shown in the third ("David") and fourth column
("Lucy"), our method yields a line topology similar to that by Pen-
cil+4 and Active Strokes and much better than those by Line Art
and Freestyle which are highly fragmented as shown in area G to
K.

Our algorithm achieves a balance between Pencil+4 and Active
Strokes: (1) It leads to more coherent and continuous curves com-
pared with Pencil+4 which links curves directly on meshes because
contour-pixels on image often have cleaner topology and smoother
geometric attributes than the contour edges on the mesh; (2) It
catches more details and better reflects the occlusion relationship
than Active Strokes.

7.4. Stylized rendering of complex models

At the end, we present some stylized results of complex models.
Figure 15 depicts three types of stroke patterns for Lucy model
while Figure 16) illustrates the final rendering results and stylized
strokes for two complex monstrous models.

8. Limitations, conclusions and future work

Our method suffers from some disadvantages in some special situ-
ations. First, it may ignore subtle contour visibility changes due to
lack of accurate 3D contour information to guide the stroke extrac-
tion and therefore wrongly connect different strokes together (see
Region A in Figure 14). Second, a stroke may be falsely broken if
being occluded by other primitive or objects as shown in the top
left of Figure 13a. This case worsens for contour features highly
clustering on the screen such as thin objects as shown in the bottom
left of Figure 13a. It usually does not happen for geometry-based
algorithms such as Pencil+4, e.g. seeing the second column in Fig-
ure 13b. Third, a minor limitation is that the extracted strokes have
a pixel offset from the actual screen-space contour. This artefact
will not be perceived generally and can be amended by moving the
stroke pixels towards their associated contour-pixels.

Regardless of the aforementioned drawbacks, our method
achieves acceleration of hundreds of times against CPU-based
methods and is enough to make up for these disadvantages in
real-time applications. As future work is to extend our frame-
work to generate temporally coherent stylized contour anima-
tions. It is also interesting to integrate the proposed framework
into a more complete and powerful GPU contour stylization
pipeline [BH19]. A reference implementation of the proposed
method is available at https://github.com/JiangWZW/
Realtime-GPU-Contour-Curves-from-3D-Mesh.

9. Acknowledgements

We thank anonymous reviewers, especially the primary reviewer,
for the valuable and careful comments. We thank Pierre Bénard for
kindly providing the experiment data of Active Strokes [BJC∗12].
We also thank Wengrui Ma and Yiming Wu for helpful discussions
on Freestyle and Line Art.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

https://github.com/JiangWZW/Realtime-GPU-Contour-Curves-from-3D-Mesh
https://github.com/JiangWZW/Realtime-GPU-Contour-Curves-from-3D-Mesh

Wangziwei Jiang, Guiqing Li∗, Yongwei Nie, Chuhua Xian South China University of Technology, Institute of Computer Science and Engineering, China / GPU-Driven Real-Time Mesh Contour Vectorization

This research is sponsored in part by the National Nat-
ural Science Foundation of China (61972160, 62072191), in
part by the Natural Science Foundation of Guangdong Province
(2019A1515012301 , 2019A1515010860). Guiqing Li is the cor-
responding author.

(a)

(b)

Figure 13: Limitations: (a) Our method wrongly partitions the rect-
angle into two strokes due to occlusion by a stick (top left) while
Pencil+4 preserves the integrity well (top right); (b) Our method
falsely clusters contour features of thin objects (the red rectangle
regions, bottom left) and Pencil+4 again yields more reasonable
results (bottom right).

References

[BCGF10] BÉNARD P., COLE F., GOLOVINSKIY A., FINKELSTEIN A.:
Self-similar texture for coherent line stylization. In Proceedings of the
8th International Symposium on Non-Photorealistic Animation and Ren-
dering (New York, NY, USA, 2010), NPAR ’10, Association for Com-
puting Machinery, p. 91–97. URL: https://doi.org/10.1145/
1809939.1809950, doi:10.1145/1809939.1809950. 1

[BH19] BÉNARD P., HERTZMANN A.: Line drawings from 3d models:
A tutorial. Foundations and Trends® in Computer Graphics and Vision
11, 1-2 (2019), 1–159. doi:10.1561/0600000075.

[BHK14] BÉNARD P., HERTZMANN A., KASS M.: Computing smooth
surface contours with accurate topology. ACM Transactions on Graphics
33, 2 (2014), 1–21. doi:10.1145/2558307.

[BJC∗12] BÉNARD P., JINGWAN L., COLE F., FINKELSTEIN A.,
THOLLOT J.: Active strokes: Coherent line stylization for animated
3d models. In NPAR 2012 - 10th International Symposium on Non-
photorealistic Animation and Rendering (Annecy, France, 2012), NPAR
2012 - 10th International Symposium on Non-photorealistic Animation
and Rendering, ACM, pp. 37–46.

[Ble90] BLELLOCH G.: Pre x sums and their applications. Tech. rep.,
Citeseer, 1990. 4

[BOA09] BILLETER M., OLSSON O., ASSARSSON U.: Efficient stream
compaction on wide simd many-core architectures. In Proceedings of the
Conference on High Performance Graphics 2009 (New York, NY, USA,
2009), HPG ’09, Association for Computing Machinery, p. 159–166. 3

[CF09] COLE F., FINKELSTEIN A.: Fast high-quality line visibility. In
Proceedings of the 2009 symposium on Interactive 3D graphics and
games (Boston, Massachusetts, 2009), Proceedings of the 2009 sympo-
sium on Interactive 3D graphics and games, Association for Computing
Machinery, p. 115–120. 2

[CF10] COLE F., FINKELSTEIN A.: Two fast methods for high-quality
line visibility. IEEE Transactions on Visualization and Computer Graph-
ics 16, 5 (2010), 707–717. doi:10.1109/TVCG.2009.102. 3, 4

[CM02] CARD D., MITCHELL J. L.: Non-photorealistic rendering with
pixel and vertex shaders. Direct3D ShaderX: vertex and pixel shader tips
and tricks (2002), 319–333. 2

[CS16] CARDONA L., SAITO S.: Temporally coherent and artistically
intended stylization of feature lines extracted from 3d models. Computer
Graphics Forum 35, 7 (2016), 137–146. doi:https://doi.org/
10.1111/cgf.13011. 2

[DiV13] DIVERDI S.: A brush stroke synthesis toolbox. In Image and
Video-Based Artistic Stylisation, Image and Video-Based Artistic Styli-
sation. 2013, pp. 23–44. 7

[GDS04] GRABLI S., DURAND F., SILLION F.: Density measure for
line-drawing simplification, 2004 6-8 Oct. 2004 2004. 1

[Goo03] GOOCH B.: Silhouette extraction. Course Notes for Theory
and Practice of Non-Photorealistic Graphics: Algorithms, Methods, and
Production Systems 6 (2003), 1–10. 2

[GTDS04] GRABLI S., TURQUIN E., DURAND F., SILLION F. X.: Pro-
grammable style for npr line drawing. In Proceedings of the Fifteenth Eu-
rographics conference on Rendering Techniques (Norrköping, Sweden,
2004), Proceedings of the Fifteenth Eurographics conference on Render-
ing Techniques, Eurographics Association, p. 33–44. 8

[GTDS10] GRABLI S., TURQUIN E., DURAND F., SILLION F. X.: Pro-
grammable rendering of line drawing from 3d scenes. ACM Transactions
on Graphics 29, 2 (2010), 1–20. 1, 5, 8

[GVH07] GOODWIN T., VOLLICK I., HERTZMANN A.: Isophote dis-
tance: a shading approach to artistic stroke thickness. In Proceedings
of the 5th international symposium on Non-photorealistic animation and
rendering (San Diego, California, 2007), Proceedings of the 5th interna-
tional symposium on Non-photorealistic animation and rendering, Asso-
ciation for Computing Machinery, p. 53–62. 1

[Har07] HARVILL A.: Effective toon-style rendering control using scalar
fields., 2007. 2

[Har10] HARRIS M.: State of the Art in GPU Data-Parallel Algorithm
Primitives. Tech. rep., Nvidia, 2010. 7

[HLW93] HSU S. C., LEE I. H. H., WISEMAN N. E.: Skele-
tal strokes. In Proceedings of the 6th Annual ACM Sym-
posium on User Interface Software and Technology (New York,
NY, USA, 1993), UIST ’93, Association for Computing Machin-
ery, p. 197–206. URL: https://doi.org/10.1145/168642.
168662, doi:10.1145/168642.168662. 7

[IHS02] ISENBERG T., HALPER N., STROTHOTTE T.: Styliz-
ing silhouettes at interactive rates: From silhouette edges to sil-
houette strokes. Comput. Graph. Forum 21, 3 (2002), 249–258.
URL: https://doi.org/10.1111/1467-8659.00584, doi:
10.1111/1467-8659.00584. 3

[LFHK21] LIU D., FISHER M., HERTZMANN A., KALOGERAKIS E.:
Neural strokes: Stylized line drawing of 3d shapes, October 2021. 2

[LGJLC05] LEWINER T., GOMES JR J. D., LOPES H., CRAIZER M.:
Curvature and torsion estimators based on parametric curve fitting. Com-
puters & Graphics 29, 5 (2005), 641–655. 6

[LNHK20] LIU D., NABAIL M., HERTZMANN A., KALOGERAKIS E.:
Neural contours: Learning to draw lines from 3d shapes, June 2020. 2

[McG04] MCGUIRE M.: Observations on silhouette sizes. Journal
of Graphics Tools 9, 1 (2004), 1–12. doi:10.1080/10867651.
2004.10487594. 3

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

https://doi.org/10.1145/1809939.1809950
https://doi.org/10.1145/1809939.1809950
https://doi.org/10.1145/1809939.1809950
https://doi.org/10.1561/0600000075
https://doi.org/10.1145/2558307
https://doi.org/10.1109/TVCG.2009.102
https://doi.org/https://doi.org/10.1111/cgf.13011
https://doi.org/https://doi.org/10.1111/cgf.13011
https://doi.org/10.1145/168642.168662
https://doi.org/10.1145/168642.168662
https://doi.org/10.1145/168642.168662
https://doi.org/10.1111/1467-8659.00584
https://doi.org/10.1111/1467-8659.00584
https://doi.org/10.1111/1467-8659.00584
https://doi.org/10.1080/10867651.2004.10487594
https://doi.org/10.1080/10867651.2004.10487594

Wangziwei Jiang, Guiqing Li∗, Yongwei Nie, Chuhua Xian South China University of Technology, Institute of Computer Science and Engineering, China / GPU-Driven Real-Time Mesh Contour Vectorization

(a)

(b)

(c)

(d)

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

Wangziwei Jiang, Guiqing Li∗, Yongwei Nie, Chuhua Xian South China University of Technology, Institute of Computer Science and Engineering, China / GPU-Driven Real-Time Mesh Contour Vectorization

(e) Active Strokes

Figure 14: (continued) Comparison of contour stroke quality among five approaches: four examples are presented for each approaches and
from top to bottom are respectively our approach, Pencil+4, Line Art, Freestyle and Active Strokes. Dotted rectangles on the model are
zoom-in regions whose larger versions are placed around the models.

Figure 15: Stylization with texture mapping: three types of stroke patterns are depicted for the Lucy model.

[MH04] MCGUIRE M., HUGHES J. F.: Hardware-determined feature
edges. In Proceedings of the 3rd international symposium on Non-
photorealistic animation and rendering (2004), Proceedings of the 3rd
international symposium on Non-photorealistic animation and rendering,
pp. 35–47. 2, 3

[Mor66] MORTON G. M.: A computer oriented geodetic data base and a
new technique in file sequencing. 5

[ND04] NIENHAUS M., DÖLLNER J.: Sketchy drawings. In Proceedings
of the 3rd international conference on Computer graphics, virtual real-
ity, visualisation and interaction in Africa (Stellenbosch, South Africa,
2004), Proceedings of the 3rd international conference on Computer
graphics, virtual reality, visualisation and interaction in Africa, Associa-
tion for Computing Machinery, p. 73–81.

[NM00] NORTHRUP J., MARKOSIAN L.: Artistic silhouettes: A hybrid
approach. In Proceedings of the 1st international symposium on Non-
photorealistic animation and rendering (2000), pp. 31–37. 3

[PSM∗13] PECIVA J., STARKA T., MILET T., KOBRTEK J., ZEMCIK P.:
Robust silhouette shadow volumes on contemporary hardware. In ’2013
(2013), pp. 56–59. 3

[RC99] RASKAR R., COHEN M.: Image precision silhouette edges. In
Proceedings of the 1999 symposium on Interactive 3D graphics (Atlanta,
Georgia, USA, 1999), Proceedings of the 1999 symposium on Interactive
3D graphics, Association for Computing Machinery, p. 135–140. 2

[Sel03] SELINGER P.: Potrace: a polygon-based tracing algorithm. Po-
trace (online), http://potrace. sourceforge. net/potrace. pdf (2009-07-01)
(2003). 2, 5

[SHG∗] SENGUPTA S., HARRIS M., GARLAND M., ET AL.: Efficient
parallel scan algorithms for gpus. 4, 5

[ST90] SAITO T., TAKAHASHI T.: Comprehensible rendering of 3-d
shapes. SIGGRAPH Comput. Graph. 24, 4 (1990), 197–206. doi:
10.1145/97880.97901. 2

[WKS07] WÄCHTER C., KELLER A., STICH M.: Efficient and ro-
bust shadow volumes using hierarchical occlusion culling and geometry
shaders, 2007. 3

[Wri90] WRIGHT W. E.: Parallelization of bresenham’s line and circle
algorithms. IEEE Computer Graphics and Applications 10, 5 (1990),
60–67. 2, 3, 4

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

https://doi.org/10.1145/97880.97901
https://doi.org/10.1145/97880.97901

Wangziwei Jiang, Guiqing Li∗, Yongwei Nie, Chuhua Xian South China University of Technology, Institute of Computer Science and Engineering, China / GPU-Driven Real-Time Mesh Contour Vectorization

Figure 16: Stylization with toon shading for two monsters: each row shows the final render (left) and stylized strokes (right).

[Wyl79] WYLLIE J. C.: The Complexity of Parallel Computations. PhD
thesis, Cornell University, 1979. 2, 5

[XFZ16] XIONG X., FENG J., ZHOU B.: Real-time image vectorization
on gpu. In VISIGRAPP (1: GRAPP) (2016), pp. 143–150. 2

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

